
42 The Delphi Magazine Issue 38

Com Corner:
Distributed Computing
by Steve Teixeira

When I was a kid, one of my
favorite breakfast cereals

was Alphabits. For those of you
who have never seen Alphabits, it
consists of little pieces of sweet-
ened cereal shaped like individual
letters of the alphabet. With each
spoonful of Alphabits, I would try
to scoop out the right chunks of
cereal to spell interesting words,
like ‘COOL’ or ‘BIKE’ or the
ever-elusive ‘STEVE’. While I don’t
usually eat breakfast cereal now, I
think I chose to work in the soft-
ware development field to fill that
deep-seated need I have to try to
make sense out of various bunches
of letters. Take the issue of DCOM
versus CORBA, for example. If
you’ve kept up with these articles
written by myself and Dave Jewell,
you probably already know that
DCOM stands for Distributed Com-
ponent Object Model (no, not
Common Object Model), and it’s
Microsoft’s ‘standard’ specifica-
tion and implementation for
interoperable software objects
over a network. CORBA, if you’ve
read the back of the Delphi 4 box,
stands for Common Object Request
Broker Architecture, and it repre-
sents a competing standard for
software objects that work
together over a network. Given the
confusing mix of acronyms associ-
ated with these technologies, how
do you decide which is right for
you? Perhaps more pragmatically,
why should you be interested in
distributed computing in the first
place? This article takes a
high-level look at these issues in
hopes of increasing your comfort
level with distributed computing.

The Next Logical Step
In order to see where software
development is heading, it’s impor-
tant to understand where we have
been. In the early days of business
computing, most companies

employed a two-tiered model
where under-powered dumb termi-
nals would run applications and
access data on a mainframe, which
provided the storage and process-
ing for the entire environment.

When the age of the PC dawned,
developers quickly flocked to the
modest hardware platform. It
didn’t take long for the demands of
software to push the envelope of
the hardware and operating sys-
tems. Overlays, protected mode,
resources and DLLs were all
devised as methods for handling
the growing size and complexity of
application code and data. Even-
tually the two-tier model came
back into vogue, with moderately
powered PCs accessing data
stored on powerful database serv-
ers. In this model, enforcement of
business rules was split between
the client (with UI rules and appli-
cation logic) and the server (with
relationships, triggers and stored
procedures). The complexity and
inefficiency inherent in this divi-
sion of business logic, combined
with the demand for more and
more power on the database serv-
ers, ushered in the age of multi-tier
application development.

In the multi-tier development
model, the client machine is as
‘thin’ as possible, and it communi-
cates with one or more middle-tier
machines that enforce business
rules, which in turn communicate
with the database servers. With
the explosion of the internet and
corporate intranets, multi-tier
application developers soon found
their middle-tier servers bom-
barded by greater volumes of
users. In order to scale to intranet
and internet volumes, it became
necessary to componentize middle
tier logic and split it among multi-
ple machines. This architecture
does away with the old concept
that an application is just an EXE

file and maybe some DLLs that run
on a particular machine. An appli-
cation can be any number of EXEs,
DLLs, services, daemons, etc, run-
ning on any number of machines.
Like any application, the compo-
nents of a distributed application
need to be able to communicate
between one another, and there is
therefore a serious need for intelli-
gent middleware that enables such
inter-component communication.
This is where technologies such as
DCOM and CORBA come in.

And don’t make the mistake of
thinking that distributed comput-
ing is ‘that thing those enterprise
people do.’ Most of us use distrib-
uted applications almost every day
on a little something we call the
internet. Think about it: you hit a
page on one of, say, Microsoft’s
web servers that launches an
Active Server Page on another
server, that uses DCOM to access
data which lives on yet another
server. Do you know or care that all
this stuff is going on behind the
scenes? No, you just want to get to
the content you’re looking for.
However, the implementation is
the way it is because that is what
scales the best.

We are fast approaching a less
machine-centric age in computing,
where it doesn’t matter what
machine processes or stores what
data. And all of this with a compar-
atively puny pipe between
machines. Imagine what happens
when the pipes connecting
machines allow data to be passed
at anything approaching the speed
of the data bus within the machine!

DCOM And CORBA
It’s important to understand that
DCOM and CORBA are really out to
solve the same fundamental
problem: getting components to
work together in a distributed, pro-
gramming language independent



October 1998 The Delphi Magazine 43

environment. However, for all their
similarities, these two technolo-
gies come at the problem from very
different points of view. DCOM fol-
lows Microsoft’s agenda for
enabling Windows to work well in a
distributed environment, while
CORBA follows an agenda of
staunch platform-neutrality and
standards-based development.
Let’s find out a little more about
these technologies and the relative
merits of each.

DCOM
DCOM is an extension of
Microsoft’s COM technology that
enables COM clients and servers to
communicate across machine
bounds. For the purposes of this
article, I’ll assume a basic under-
standing of how COM works. Since
DCOM is an evolutionary step in
Microsoft’s efforts for application
and component interoperability,
you can trace the genesis of DCOM
to that quirky technology called
OLE (Object Linking and
Embedding) that was designed to
allow applications to communicate
with one another on the same
machine. OLE matured into OLE 2,
which employed COM as its basic
underpinnings, and enabled
in-place activation of one type of
object within another (for exam-
ple, an Excel spreadsheet within a
Word document). Later came
ActiveX, which, among other
things, added a variety of technolo-
gies that support the internet to
the COM runtime. DCOM then

came on the scene as a means to
broaden the machine-centric COM
technology to entire networks and
even the internet. Figure 1 shows a
graphical representation of the
steps involved in making a DCOM
call from client to server. The
client calls into the COM runtime,
which handles details like marshal-
ling and object creation. The data
is passed across the wire using a
special DCOM-enhanced version of
the DCE RPC protocol, where it’s
received, unmarshalled, and
passed into the COM server.

CORBA
CORBA is a platform-neutral
middleware technology that is
defined by the Object Management
Group (OMG) and implemented by
a number of different software
vendors. While DCOM represents
the evolution of Microsoft’s OLE
and COM strategies, CORBA was
designed from the ground up with
the goal of enabling software com-
ponents to communicate with one
another, no matter who wrote

them or where they
exist. The heart of a
CORBA system is
the Object Request
Broker (ORB). The
ORB is the func-
tional equivalent of
the DCOM runtime,
security, and trans-
port layers. CORBA
objects are gener-
ally defined using
Interface Definition
Language (IDL).
From the IDL, skele-
tons are generated
for the object

implementation and stubs are gen-
erated for the client to call object
methods through the ORB. For
Delphi users, this process is han-
dled automatically when you
define your CORBA interfaces in
the Type Library Editor.

Like COM, CORBA also provides
a means for dynamic invocation of
methods on the object from the
client. All calls from client to server
are routed through the ORB, and
like COM, the ORB can be called
directly by the client or the server
when either wishes to take advan-
tage of ORB services. Services such
as security can be built onto the
ORB using Object Adapters. Figure
2 shows an example of a CORBA
client making a call into an object.

The purpose of this article isn’t
to drill down deeply into the gory
details of DCOM and CORBA imple-
mentations, but rather take a
high-level approach and look at
some of the advantages and disad-
vantages inherent in each.

Some of the programming issues
surrounding enterprise compo-
nent development include:
technology ownership, cost of
entry, tools support, multi-
platform support, performance,
security, lifetime management and
extensibility. I will provide a com-
parison of the two technologies for
each of these topics.

Technology Ownership
A chief advantage of DCOM is that
it is a Microsoft technology.
Because DCOM is a strategic part
of Microsoft’s future plans, you can
rest assured that the world’s larg-
est software company is staffing it
with ample resources to ensure it

Client
COM

runtime

COM
Component

COM
runtime

DCE RPCSecurity
Provider

Security
Provider

DCE RPC

Protocol Stack Protocol Stack

DCOM network protocol

COM runtime COM runtime

Client Object

D
yn

am
ic

 I
n

vo
ca

ti
o

n

D
yn

am
ic

Sk
el

et
o

n

ID
L 

St
u

b

ID
L 

Sk
el

et
o

n

Object Adaptor

ORB

➤ Figure 2

➤ Figure 1



44 The Delphi Magazine Issue 38

continues to be a viable technol-
ogy. What’s more, you can bet that
Windows platforms will always be
the best equipped to take advan-
tage of DCOM. All that said, I also
consider the fact that DCOM is a
Microsoft technology is also con-
sidered a disadvantage. This is due
to Microsoft’s reputation for
investing in technologies which
further their agenda (sell more
Windows!), without necessarily
solving the customer’s problems.
Microsoft is free to modify DCOM
whenever and wherever they see
fit. What’s more, Microsoft also has
a reputation for making their own
technologies obsolete in order to
sell the Next Big Thing.

As I mentioned earlier, the OMG
is responsible for the care and
feeding of the CORBA specifica-
tions, while ORBs are implemented
by several companies and individ-
uals. Because the OMG employs a
committee of various industry rep-
resentatives that steer the direc-
tion of CORBA, it’s unlikely to
become too heavily influenced by
the agenda of any one particular
vendor. However, as we all know,
anything designed by a committee
isn’t likely to be without
compromises.

My analysis is: if you are a
Microsoft shop, then you shouldn’t
consider the issue of DCOM owner-
ship a bad thing, since you can be
reasonably sure that DCOM will
continue to work well with
Windows for a long time to come.
However, if your environment is
heterogeneous, then the fact that
CORBA relies on industry stan-
dards across multiple vendors will
make it the clear choice.

Cost Of Entry
Perhaps the most compelling
advantage of DCOM is that it is
based on COM. If you already have
a significant investment in COM
development, then you will proba-
bly be able to get your COM object
up and running over a network
with DCOM with no programming
and a little bit of configuration. Not
only that, but you can leverage
existing expertise in COM develop-
ment so that your development
efforts experience little down time

as you transition into the distrib-
uted world. Also, DCOM is
available for free.

Currently, the cost for entry into
the CORBA world is high. To be an
effective CORBA developer you
must be proficient in a number of
disciplines, including IDL, addi-
tional platforms and the specifics
of the ORB you use. Delphi does
reduce the cost of entry into
CORBA by allowing you to expose
your Automation objects as
CORBA objects. However, to go
beyond the basics still requires a
significant amount of knowledge.
Monetarily speaking, expect to pay
ORB licensing fees.

My analysis is: the clear edge for
Delphi developers is DCOM.

Tools Support
Between Microsoft’s Visual Studio
tools and Inprise’s Borland tools,
it’s difficult to throw a rock into a
software store without hitting a
box of software that makes COM
development easy. Necessity, as
they say, is the mother of inven-
tion. Without development tools
support, COM development is a
tedious practice.

While bringing the world’s best
CORBA support to Borland brand
tools is Inprise’s mission, CORBA
integration with development
tools is still in the early stages.
Delphi is currently the only RAD
tool with support for CORBA, and
while it shows a great deal of prom-
ise, the implementation isn’t as
complete as COM support.

My analysis is: DCOM is in the
lead, with CORBA gaining ground.

Multi-Platform Support
Make no mistake, DCOM is a
Microsoft technology. Microsoft
has even gone as far as to state that
they intend for Windows to be the
best platform for DCOM. While
DCOM implementations for other
platforms such as various Unix fla-
vors, OpenVMS and MacOS are in
various stages of development or
beta testing, release dates have yet
to be announced.

Multi-platform is what CORBA is
all about. There are ORB imple-
mentations for all major platforms
and a whole bunch of obscure

platforms, and CORBA handles
the complexity of marshalling
between plaforms.

My analysis is: no contest. If you
intend for objects to operate on
multiple platforms, then CORBA is
the only way to go today.

Performance
Believe it or not, there is no clear
winner as far as performance is
concerned. DCOM is faster in some
cases and CORBA in others. My
advice here is, all other things
being equal, write COM and
CORBA test applications that
come as close to your production
use of the technology and bench-
mark them.

Security
DCOM uses Windows NT security
and access is handled via the
DCOM Configuration utility
(DCOMCNFG). There isn’t a lot of
flexibility in the DCOM security
model unless you undertake the
significant task of writing your own
client and server proxies, which
could encrypt data, perform
custom login or authentication, or
employ some other security fea-
ture. One advantage to DCOM’s
security infrastructure is that you
don’t have to pay any extra for it; it
comes with the OS.

CORBA’s security architecture
is designed to be extensible, and
can even integrate with the Java
‘sandbox’ for client-side applica-
tions. The downside is the
possible additional cost or config-
uration associated with a particu-
lar security mechanism. Examples
of CORBA security products
include Inrise’s VisiBroker SSL
Pack and VisiBroker GateKeeper.

My analysis is: CORBA is your
choice if you need security capa-
ble of fulfilling the requirements
for virtually any industry.

Lifetime Management
COM is most commonly used in
situations where server objects
are transient in nature, and the ref-
erence counting mechanism inher-
ent in IUnknown isn’t exactly ideal
for distributed objects. For exam-
ple, the enormous volume of
AddRef and Release calls that COM



October 1998 The Delphi Magazine 45

generates as a part of standard
operating procedure could be
murder on a network as well as the
server receiving all those calls. To
help alleviate this problem, DCOM
tries to queue AddRef and Release
calls on the client and send them to
the server in batches. Speaking of
reference counting, minor ref
counting bugs are something every
COM programmer fights: they are
the frequent cause of objects going
away while you are using them or
objects hanging around forever
because their ref count never
reaches 0. On one machine it isn’t
that big a deal, but in a multi-user
distributed environment, it’s unac-
ceptable. As an extra measure to
guard against errors caused by cli-
ents going down, DCOM clients
periodically ping their servers. If a
server doesn’t receive a ping from
a client within a certain time, refer-
ences to that server from the client
will be released.

Unlike COM, CORBA objects are
not generally designed to be tran-
sient. Typical CORBA objects go up
and stay up for a long period of

time. Because it was designed from
scratch as a technology to reach
across machine boundaries, it
isn’t plagued by the same lifetime
management problems inherent in
DCOM due to its COM roots.

My analysis is: if your architec-
ture calls for objects to stay up for
very long periods of time (days,
weeks, months), then CORBA is
the better choice. DCOM is a good
choice for transient objects, but
watch out for those ref count bugs!

Extensibility
DCOM is extensible only in the
sense that you build infrastructure
on top of COM or your application.
It isn’t possible to hook directly
into the COM runtime provided by
the operating system.

CORBA is designed to be exten-
sible so that services, such as
security, transaction processing,
and object activation and deacti-
vation can integrate with the ORB.
Using the Internet Inter-ORB Proto-
col (IIOP), ORBs from different
vendors can even communicate
with one another.

My analysis: CORBA is definitely
more extensible.

Summary
Hopefully, this article has pro-
vided you with some insight into
the world of distributed comput-
ing and the differences between
COM and CORBA. As you can see,
DCOM is sort of the path of least
resistance for the Windows devel-
oper, whereas CORBA should be
the choice of those concerned
with standards-based develop-
ment and objects running in a het-
erogeneous environment. You’ll
now think of me the next time you
find letters like DCOM, CORBA,
OMG, IDL, ORB, or IIOP in your
morning Alphabits.

Steve Teixeira works at DeVries
Data Systems. He wishes to thank
Lino, Helen and Phil for their help
with this article. If you have a
great idea for a COM article, email
Steve at steve@dvdata.com


	The Next Logical Step
	DCOM And CORBA
	DCOM
	CORBA
	Technology Ownership
	Cost Of Entry
	Tools Support
	Multi-Platform Support
	Performance
	Security
	Lifetime Management
	Extensibility
	Summary

